\(\int \frac {\sin ^3(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx\) [1397]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 509 \[ \int \frac {\sin ^3(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=-\frac {a^3 \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{b^{3/2} \left (-a^2+b^2\right )^{5/4} f g^{3/2}}+\frac {a^3 \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{b^{3/2} \left (-a^2+b^2\right )^{5/4} f g^{3/2}}+\frac {2 a}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}-\frac {2 a^2 \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{b \left (a^2-b^2\right ) f g^2 \sqrt {\cos (e+f x)}}+\frac {4 b \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{\left (a^2-b^2\right ) f g^2 \sqrt {\cos (e+f x)}}+\frac {a^4 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^2 \left (a^2-b^2\right ) \left (b-\sqrt {-a^2+b^2}\right ) f g \sqrt {g \cos (e+f x)}}+\frac {a^4 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^2 \left (a^2-b^2\right ) \left (b+\sqrt {-a^2+b^2}\right ) f g \sqrt {g \cos (e+f x)}}-\frac {2 b \sin (e+f x)}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}} \]

[Out]

-a^3*arctan(b^(1/2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))/b^(3/2)/(-a^2+b^2)^(5/4)/f/g^(3/2)+a^3*arct
anh(b^(1/2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))/b^(3/2)/(-a^2+b^2)^(5/4)/f/g^(3/2)+2*a/(a^2-b^2)/f/
g/(g*cos(f*x+e))^(1/2)-2*b*sin(f*x+e)/(a^2-b^2)/f/g/(g*cos(f*x+e))^(1/2)+a^4*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(
1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2))*cos(f*x+e)^(1/2)/b^2/(a^2-b^2)/
f/g/(b-(-a^2+b^2)^(1/2))/(g*cos(f*x+e))^(1/2)+a^4*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticPi(s
in(1/2*f*x+1/2*e),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(f*x+e)^(1/2)/b^2/(a^2-b^2)/f/g/(b+(-a^2+b^2)^(1/2))/(g
*cos(f*x+e))^(1/2)-2*a^2*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))
*(g*cos(f*x+e))^(1/2)/b/(a^2-b^2)/f/g^2/cos(f*x+e)^(1/2)+4*b*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*E
llipticE(sin(1/2*f*x+1/2*e),2^(1/2))*(g*cos(f*x+e))^(1/2)/(a^2-b^2)/f/g^2/cos(f*x+e)^(1/2)

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 509, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {2981, 2645, 30, 2646, 2721, 2719, 2946, 2780, 2886, 2884, 335, 304, 211, 214} \[ \int \frac {\sin ^3(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=-\frac {2 a^2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{b f g^2 \left (a^2-b^2\right ) \sqrt {\cos (e+f x)}}+\frac {4 b E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \left (a^2-b^2\right ) \sqrt {\cos (e+f x)}}+\frac {2 a}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}-\frac {2 b \sin (e+f x)}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}+\frac {a^4 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{b^2 f g \left (a^2-b^2\right ) \left (b-\sqrt {b^2-a^2}\right ) \sqrt {g \cos (e+f x)}}+\frac {a^4 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{b^2 f g \left (a^2-b^2\right ) \left (\sqrt {b^2-a^2}+b\right ) \sqrt {g \cos (e+f x)}}-\frac {a^3 \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{b^{3/2} f g^{3/2} \left (b^2-a^2\right )^{5/4}}+\frac {a^3 \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{b^{3/2} f g^{3/2} \left (b^2-a^2\right )^{5/4}} \]

[In]

Int[Sin[e + f*x]^3/((g*Cos[e + f*x])^(3/2)*(a + b*Sin[e + f*x])),x]

[Out]

-((a^3*ArcTan[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(b^(3/2)*(-a^2 + b^2)^(5/4)*f*g^(3
/2))) + (a^3*ArcTanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(b^(3/2)*(-a^2 + b^2)^(5/4)
*f*g^(3/2)) + (2*a)/((a^2 - b^2)*f*g*Sqrt[g*Cos[e + f*x]]) - (2*a^2*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2
, 2])/(b*(a^2 - b^2)*f*g^2*Sqrt[Cos[e + f*x]]) + (4*b*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/((a^2 -
b^2)*f*g^2*Sqrt[Cos[e + f*x]]) + (a^4*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (e + f*x)/2,
 2])/(b^2*(a^2 - b^2)*(b - Sqrt[-a^2 + b^2])*f*g*Sqrt[g*Cos[e + f*x]]) + (a^4*Sqrt[Cos[e + f*x]]*EllipticPi[(2
*b)/(b + Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(b^2*(a^2 - b^2)*(b + Sqrt[-a^2 + b^2])*f*g*Sqrt[g*Cos[e + f*x]])
 - (2*b*Sin[e + f*x])/((a^2 - b^2)*f*g*Sqrt[g*Cos[e + f*x]])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2645

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2646

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-a)*(a*Sin[e
 + f*x])^(m - 1)*((b*Cos[e + f*x])^(n + 1)/(b*f*(n + 1))), x] + Dist[a^2*((m - 1)/(b^2*(n + 1))), Int[(a*Sin[e
 + f*x])^(m - 2)*(b*Cos[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Int
egersQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2780

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> With[{q = Rt[-a^2
 + b^2, 2]}, Dist[a*(g/(2*b)), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (-Dist[a*(g/(2*b)),
 Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x] + Dist[b*(g/f), Subst[Int[Sqrt[x]/(g^2*(a^2 - b^2)
+ b^2*x^2), x], x, g*Cos[e + f*x]], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2981

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Dist[a*(d^2/(a^2 - b^2)), Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 2), x], x] + (-D
ist[b*(d/(a^2 - b^2)), Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x], x] - Dist[a^2*(d^2/(g^2*(a^2 - b^2
))), Int[(g*Cos[e + f*x])^(p + 2)*((d*Sin[e + f*x])^(n - 2)/(a + b*Sin[e + f*x])), x], x]) /; FreeQ[{a, b, d,
e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1] && GtQ[n, 1]

Rubi steps \begin{align*} \text {integral}& = \frac {a \int \frac {\sin (e+f x)}{(g \cos (e+f x))^{3/2}} \, dx}{a^2-b^2}-\frac {b \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{3/2}} \, dx}{a^2-b^2}-\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)} \sin (e+f x)}{a+b \sin (e+f x)} \, dx}{\left (a^2-b^2\right ) g^2} \\ & = -\frac {2 b \sin (e+f x)}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}-\frac {a^2 \int \sqrt {g \cos (e+f x)} \, dx}{b \left (a^2-b^2\right ) g^2}+\frac {a^3 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)} \, dx}{b \left (a^2-b^2\right ) g^2}+\frac {(2 b) \int \sqrt {g \cos (e+f x)} \, dx}{\left (a^2-b^2\right ) g^2}-\frac {a \text {Subst}\left (\int \frac {1}{x^{3/2}} \, dx,x,g \cos (e+f x)\right )}{\left (a^2-b^2\right ) f g} \\ & = \frac {2 a}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}-\frac {2 b \sin (e+f x)}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}-\frac {a^4 \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 b^2 \left (a^2-b^2\right ) g}+\frac {a^4 \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 b^2 \left (a^2-b^2\right ) g}+\frac {a^3 \text {Subst}\left (\int \frac {\sqrt {x}}{\left (a^2-b^2\right ) g^2+b^2 x^2} \, dx,x,g \cos (e+f x)\right )}{\left (a^2-b^2\right ) f g}-\frac {\left (a^2 \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{b \left (a^2-b^2\right ) g^2 \sqrt {\cos (e+f x)}}+\frac {\left (2 b \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{\left (a^2-b^2\right ) g^2 \sqrt {\cos (e+f x)}} \\ & = \frac {2 a}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}-\frac {2 a^2 \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{b \left (a^2-b^2\right ) f g^2 \sqrt {\cos (e+f x)}}+\frac {4 b \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{\left (a^2-b^2\right ) f g^2 \sqrt {\cos (e+f x)}}-\frac {2 b \sin (e+f x)}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}+\frac {\left (2 a^3\right ) \text {Subst}\left (\int \frac {x^2}{\left (a^2-b^2\right ) g^2+b^2 x^4} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{\left (a^2-b^2\right ) f g}-\frac {\left (a^4 \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 b^2 \left (a^2-b^2\right ) g \sqrt {g \cos (e+f x)}}+\frac {\left (a^4 \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 b^2 \left (a^2-b^2\right ) g \sqrt {g \cos (e+f x)}} \\ & = \frac {2 a}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}-\frac {2 a^2 \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{b \left (a^2-b^2\right ) f g^2 \sqrt {\cos (e+f x)}}+\frac {4 b \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{\left (a^2-b^2\right ) f g^2 \sqrt {\cos (e+f x)}}+\frac {a^4 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^2 \left (a^2-b^2\right ) \left (b-\sqrt {-a^2+b^2}\right ) f g \sqrt {g \cos (e+f x)}}+\frac {a^4 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^2 \left (a^2-b^2\right ) \left (b+\sqrt {-a^2+b^2}\right ) f g \sqrt {g \cos (e+f x)}}-\frac {2 b \sin (e+f x)}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}-\frac {a^3 \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} g-b x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{b \left (a^2-b^2\right ) f g}+\frac {a^3 \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} g+b x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{b \left (a^2-b^2\right ) f g} \\ & = -\frac {a^3 \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{b^{3/2} \left (-a^2+b^2\right )^{5/4} f g^{3/2}}+\frac {a^3 \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{b^{3/2} \left (-a^2+b^2\right )^{5/4} f g^{3/2}}+\frac {2 a}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}-\frac {2 a^2 \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{b \left (a^2-b^2\right ) f g^2 \sqrt {\cos (e+f x)}}+\frac {4 b \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{\left (a^2-b^2\right ) f g^2 \sqrt {\cos (e+f x)}}+\frac {a^4 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^2 \left (a^2-b^2\right ) \left (b-\sqrt {-a^2+b^2}\right ) f g \sqrt {g \cos (e+f x)}}+\frac {a^4 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^2 \left (a^2-b^2\right ) \left (b+\sqrt {-a^2+b^2}\right ) f g \sqrt {g \cos (e+f x)}}-\frac {2 b \sin (e+f x)}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 20.28 (sec) , antiderivative size = 793, normalized size of antiderivative = 1.56 \[ \int \frac {\sin ^3(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\frac {2 \cos (e+f x) (a-b \sin (e+f x))}{\left (a^2-b^2\right ) f (g \cos (e+f x))^{3/2}}-\frac {\cos ^{\frac {3}{2}}(e+f x) \left (\frac {4 a b \left (a+b \sqrt {1-\cos ^2(e+f x)}\right ) \left (\frac {a \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},1,\frac {7}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(e+f x)}{3 \left (a^2-b^2\right )}+\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \left (2 \arctan \left (1-\frac {(1+i) \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{-a^2+b^2}}\right )-2 \arctan \left (1+\frac {(1+i) \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{-a^2+b^2}}\right )-\log \left (\sqrt {-a^2+b^2}-(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (e+f x)}+i b \cos (e+f x)\right )+\log \left (\sqrt {-a^2+b^2}+(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (e+f x)}+i b \cos (e+f x)\right )\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2}}\right ) \sin (e+f x)}{\sqrt {1-\cos ^2(e+f x)} (a+b \sin (e+f x))}-\frac {\left (a^2-2 b^2\right ) \left (a+b \sqrt {1-\cos ^2(e+f x)}\right ) \left (8 b^{5/2} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{2},1,\frac {7}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(e+f x)+3 \sqrt {2} a \left (a^2-b^2\right )^{3/4} \left (2 \arctan \left (1-\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )-2 \arctan \left (1+\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )-\log \left (\sqrt {a^2-b^2}-\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )+\log \left (\sqrt {a^2-b^2}+\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )\right )\right ) \sin ^2(e+f x)}{12 b^{3/2} \left (-a^2+b^2\right ) \left (1-\cos ^2(e+f x)\right ) (a+b \sin (e+f x))}\right )}{(a-b) (a+b) f (g \cos (e+f x))^{3/2}} \]

[In]

Integrate[Sin[e + f*x]^3/((g*Cos[e + f*x])^(3/2)*(a + b*Sin[e + f*x])),x]

[Out]

(2*Cos[e + f*x]*(a - b*Sin[e + f*x]))/((a^2 - b^2)*f*(g*Cos[e + f*x])^(3/2)) - (Cos[e + f*x]^(3/2)*((4*a*b*(a
+ b*Sqrt[1 - Cos[e + f*x]^2])*((a*AppellF1[3/4, 1/2, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)
]*Cos[e + f*x]^(3/2))/(3*(a^2 - b^2)) + ((1/8 + I/8)*(2*ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Cos[e + f*x]])/(-a^2
+ b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[e + f*x]])/(-a^2 + b^2)^(1/4)] - Log[Sqrt[-a^2 + b^2] -
 (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f*x]] + I*b*Cos[e + f*x]] + Log[Sqrt[-a^2 + b^2] + (1 + I)*Sq
rt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f*x]] + I*b*Cos[e + f*x]]))/(Sqrt[b]*(-a^2 + b^2)^(1/4)))*Sin[e + f*x])/
(Sqrt[1 - Cos[e + f*x]^2]*(a + b*Sin[e + f*x])) - ((a^2 - 2*b^2)*(a + b*Sqrt[1 - Cos[e + f*x]^2])*(8*b^(5/2)*A
ppellF1[3/4, -1/2, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)]*Cos[e + f*x]^(3/2) + 3*Sqrt[2]*a
*(a^2 - b^2)^(3/4)*(2*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] - 2*ArcTan[1 + (Sqrt[
2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sq
rt[Cos[e + f*x]] + b*Cos[e + f*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]
] + b*Cos[e + f*x]]))*Sin[e + f*x]^2)/(12*b^(3/2)*(-a^2 + b^2)*(1 - Cos[e + f*x]^2)*(a + b*Sin[e + f*x]))))/((
a - b)*(a + b)*f*(g*Cos[e + f*x])^(3/2))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 5.11 (sec) , antiderivative size = 1146, normalized size of antiderivative = 2.25

method result size
default \(\text {Expression too large to display}\) \(1146\)

[In]

int(sin(f*x+e)^3/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

(16/g*a*(-1/4/(8*a^2-8*b^2)*2^(1/2)/g/(cos(1/2*f*x+1/2*e)+1/2*2^(1/2))*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)+1/4
/(8*a^2-8*b^2)*2^(1/2)/g/(cos(1/2*f*x+1/2*e)-1/2*2^(1/2))*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)+1/64*a^2/(a-b)/(
a+b)/(g^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*(ln((2*g*cos(1/2*f*x+1/2*e)^2-g-(g^2*(a^2-b^2)/b^2)^(1/4)*(2*g*cos(1/2*
f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2))/(2*g*cos(1/2*f*x+1/2*e)^2-g+(g^2*(a^2-b^2)/b^2)^(1/4)
*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan((2^(1/2)*(2*g*cos(1/2*f*x+1/2
*e)^2-g)^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/4))/(g^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1/2)*(2*g*cos(1/2*f*x+1/2*e)
^2-g)^(1/2)-(g^2*(a^2-b^2)/b^2)^(1/4))/(g^2*(a^2-b^2)/b^2)^(1/4)))/b^2)+32*(g*(2*cos(1/2*f*x+1/2*e)^2-1)*sin(1
/2*f*x+1/2*e)^2)^(1/2)*b/g*(1/8*(-1+sin(1/2*f*x+1/2*e)^2)/b^2*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*cos(1/2*f*x+1/
2*e)^2)^(1/2)/(-g*(2*sin(1/2*f*x+1/2*e)^4-sin(1/2*f*x+1/2*e)^2))^(1/2)*EllipticF(cos(1/2*f*x+1/2*e),2^(1/2))+(
1-sin(1/2*f*x+1/2*e)^2)/(8*a^2-8*b^2)/sin(1/2*f*x+1/2*e)^2/g/(2*sin(1/2*f*x+1/2*e)^2-1)*(-2*g*sin(1/2*f*x+1/2*
e)^4+g*sin(1/2*f*x+1/2*e)^2)^(1/2)*(2*cos(1/2*f*x+1/2*e)*sin(1/2*f*x+1/2*e)^2-EllipticE(cos(1/2*f*x+1/2*e),2^(
1/2))*(2*sin(1/2*f*x+1/2*e)^2-1)^(1/2)*(sin(1/2*f*x+1/2*e)^2)^(1/2))-1/128*a^2/(a-b)/(a+b)/b^4*sum((-2*sin(1/2
*f*x+1/2*e)^2*_alpha^2*b^2+sin(1/2*f*x+1/2*e)^2*a^2+2*b^2*_alpha^2-a^2)/_alpha/(2*_alpha^2-1)*(2^(1/2)/(g*(2*_
alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*g*(4*_alpha^2-3)/(4*a^2-3*b^2)*(b^2*_alpha^2+4*a^2*cos(1/2*f*x+1
/2*e)^2-3*b^2*cos(1/2*f*x+1/2*e)^2-3*a^2+2*b^2)*2^(1/2)/(g*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-g*(2*sin(1/
2*f*x+1/2*e)^4-sin(1/2*f*x+1/2*e)^2))^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*c
os(1/2*f*x+1/2*e)^2)^(1/2)/(-g*sin(1/2*f*x+1/2*e)^2*(2*sin(1/2*f*x+1/2*e)^2-1))^(1/2)*EllipticPi(cos(1/2*f*x+1
/2*e),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2)))/sin(1/2*f*x+1/2*e)/(g*(2*co
s(1/2*f*x+1/2*e)^2-1))^(1/2))/f

Fricas [F(-1)]

Timed out. \[ \int \frac {\sin ^3(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\text {Timed out} \]

[In]

integrate(sin(f*x+e)^3/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^3(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\text {Timed out} \]

[In]

integrate(sin(f*x+e)**3/(g*cos(f*x+e))**(3/2)/(a+b*sin(f*x+e)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sin ^3(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\sin \left (f x + e\right )^{3}}{\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

[In]

integrate(sin(f*x+e)^3/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^3/((g*cos(f*x + e))^(3/2)*(b*sin(f*x + e) + a)), x)

Giac [F]

\[ \int \frac {\sin ^3(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\sin \left (f x + e\right )^{3}}{\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

[In]

integrate(sin(f*x+e)^3/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^3/((g*cos(f*x + e))^(3/2)*(b*sin(f*x + e) + a)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^3(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^3}{{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \]

[In]

int(sin(e + f*x)^3/((g*cos(e + f*x))^(3/2)*(a + b*sin(e + f*x))),x)

[Out]

int(sin(e + f*x)^3/((g*cos(e + f*x))^(3/2)*(a + b*sin(e + f*x))), x)